A two-grid discretization scheme for eigenvalue problems

نویسندگان

  • Jinchao Xu
  • Aihui Zhou
چکیده

A two-grid discretization scheme is proposed for solving eigenvalue problems, including both partial differential equations and integral equations. With this new scheme, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a much coarser grid, and the solution of a linear algebraic system on the fine grid and the resulting solution still maintains an asymptotically optimal accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-grid Discretization Schemes of the Nonconforming Fem for Eigenvalue Problems

This paper extends the two-grid discretization scheme of the conforming finite elements proposed by Xu and Zhou (Math. Comput., 70 (2001), pp.17-25) to the nonconforming finite elements for eigenvalue problems. In particular, two two-grid discretization schemes based on Rayleigh quotient technique are proposed. By using these new schemes, the solution of an eigenvalue problem on a fine mesh is ...

متن کامل

Acceleration of a Two-grid Method for Eigenvalue Problems

This paper provides a new two-grid discretization method for solving partial differential equation or integral equation eigenvalue problems. In 2001, Xu and Zhou introduced a scheme that reduces the solution of an eigenvalue problem on a finite element grid to that of one single linear problem on the same grid together with a similar eigenvalue problem on a much coarser grid. By solving a sligh...

متن کامل

Corrigendum to: "Acceleration of a two-grid method for eigenvalue problems"

This paper provides a new two-grid discretization method for solving partial differential equation or integral equation eigenvalue problems. In 2001, Xu and Zhou introduced a scheme that reduces the solution of an eigenvalue problem on a finite element grid to that of one single linear problem on the same grid together with a similar eigenvalue problem on a much coarser grid. By solving a sligh...

متن کامل

A two-grid discretization scheme for the Steklov eigenvalue problem

In the paper, a two-grid discretization scheme is discussed for the Steklov eigenvalue problem. With the scheme, the solution of the Steklov eigenvalue problem on a fine grid is reduced to the solution of the Steklov eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. Using spectral approximation theory, it is shown theoretically that the tw...

متن کامل

Local and Parallel Finite Element Algorithm Based on Multilevel Discretization for Eigenvalue Problems

In this paper, a local and parallel algorithm based on the multilevel discretization is proposed for solving the eigenvalue problem by the finite element method. With this new scheme, the eigenvalue problem solving in the finest grid is transferred to solutions of the eigenvalue problems on the coarsest mesh and a series of solutions of boundary value problems on each level mesh. Therefore this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2001